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Abstract - This paper deals with the reconstruction of the inlet temperature profile of a melted polyethylene 
(PE) flowing through an extrusion die. The inverse heat transfer problem is formulated as an optimisation 
problem by considering both the energy and the Navier-Stokes equations. It is solved by using the conjugate 
gradient algorithm. Experimental results are presented and show the effect of the pressure drop combined with 
the viscous dissipation effect on the temperature profile along the channel die. 

1. INTRODUCTION 
During polymer extrusion, even after the melting zone, heat transfer takes an important place at the outlet of the 
extruder [1, 2]. The polymer flows through thin channel within the die. Due to high viscous dissipation and very 
low heat conductivity, the temperature profile can be quite sharp. Overheated area can be generated within the 
flow and degradation of the polymer could occur. For such creeping flow the temperature field is affected far 
downstream from the entrance of the die, so to predict accurately and to control the temperature rise, the inlet 
temperature profile has to be taken into account. However, due to the history in the extruder, the material 
temperature at the die entrance is rarely uniform. Hence the determination of this temperature profile is referred 
to as a boundary inverse heat transfer problem. There are numerous works on the initial temperature profile 
restoration, for example [3] estimated the inlet temperature profile in the laminar duct flow and subsequent 
investigations [4 - 6] examined various aspects of this problem. Recently, Hsu et al. [7] presented a two-
dimensional inverse least squares method to estimate both inlet temperature and wall heat flux in a steady 
laminar flow in a circular duct.   Huang and Chen [8] have solved a non-stationary Navier-Stokes equation, to 
provide coefficients for energy equation, but the velocity field does not depend on temperature. Gejadze and 
Jarny [9] have presented a detailed analysis of IHCP coupled problem, when the velocity field depends on 
temperature field through viscosity and Navier-Stokes equations for a non-Newtonian fluid. Recently, Nguyen 
and Prystay [10] estimated the initial  temperature profile and its evolution in polymer processing using the 
surface temperature measurement and the conjugate gradient method was employed to search for the minimum 
of the functional. 

In this work, the resolution of an inverse heat transfer problem is developed to estimate the temperature field 
within the polymer flow from temperature measurements taken inside the die wall. The solution is computed 
according to the classical Conjugate Gradient Method (CGM). An iterative numerical procedure is used to solve 
the direct, the adjoint and the sensitivity equations. The modelling equations for the fluid flow in the channel as 
well as for the heat flow within the melted polymer and the wall regions are solved simultaneously [11]. The 
melted polymer is considered as an incompressible pseudo-plastic fluid, and the flow is assumed to be steady 
and laminar. In a previous work [12] the sensitivity analysis led to important results to design the experimental 
die and to decide the location of the thermocouples within the die. The method was validated using numerically 
generated data for different thermal and flow conditions [13]. The algorithm is used here to predict the polymer 
temperature profile within an experimental die channel. 

 
2. EXPERIMENTAL DEVICE 
2.1 Extrusion Die 
The main parts of the experimental extrusion die, described in Figures 1 and 2, are as follows: 

- A rectangular channel ( )22 30mm× , is connected to the extruder outlet through a cone of length 

, the total channel length is  51mmlc = 240mm.Lch =

- The channel walls are made of four stainless blocks, instrumented by thermocouples (type K), the 
length, thickness and width of each block are 200mmL = , 19mmH =  and . 50mmlb =

- Two electrical heater plates ensure the heating of the die on the upper and the lower faces. 
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- Two kinds of insulator are used to limit the heat side losses: a composite material and a porous foam-
glass (thickness: 3 cm) surround the non-heated side surfaces of the die. 

The pressure  and the temperature  of the polymer are measured near the channel entrance. The 
temperature of the extrusion die walls is measured in several places by using thermocouples 
(Chromel/Alumel,

matP matT

50µmφ = ). 
- 24 thermocouples are located close to the upper and lower faces of  the channel , 
-  20 thermocouples close to both the heating plates 
-  8 thermocouples are located at the outer face of the die 
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Figure 1 : Extrusion die (model 3D). Figure 3 : Viscosity of  PE melt. 
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Figure 2 :   Experimental die – sensor locations. 

e thermophysical properties of the metallic die are assumed to be constant: the thermal conductivity is 

, the heat capacity is( ) 116 .W mK − ( ) 1460 .pwC J kg K −= and the density is .  3/7800 mkgw =ρ

olymer Properties 

extrudated polymer used for the experiments is a polyethylene (PE Dowlex 2042E extrusion grade). The 
sity function ( ,T )η γ& , is temperature and shear-rate dependent. The rheological properties were measured 
the 450-510 K temperature range with shear rates varying from 0.1 s-1 to 1000s-1.  Determination of the 
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viscosity curve, Figure 3, over a wide range of shear rate values is essential for solving the flow eqns (2)-(12). 
The data measurements were fitted to the Cross WLF model. 

( ) ( ) ( )1, exp / 1 nT a bTη γ λγ −⎡ ⎤= +⎣ ⎦
& &  (1) 

The thermal and rheological parameters of the PE are given in Table 1.  

Table 1: Thermal and rheological properties of  PE Dowlex 2042E. 
Thermal properties at T=220 °C Rheological properties 

( )1 1. .f W m Kλ − −  0.3  ( ).a Pa s  54329  

( )1 1. .pfC J kg K− −  2650  ( )1 b K −  0.0095  

( )1sλ −  0.1657  ( )3.f g cmρ −  0.745  
n  0.36  

 
2.3 Experimental Conditions and Procedure 
All the experiments were carried out with a single-screw extruder (diameter 30 mm and length 780 mm). The 
maximum flow rate is 15 kg/h, and the maximum rotation speed 100 rpm. The flow rate was measured by 
weighing the mass of polymer exiting at the output of the die with an electronic balance. The pressure drop 

p∆ along the channel die was also measured by using two pressure sensors located at the inlet and outlet die. 
The transducers are rated at up to 80 MPa and are interfaced with the control system, which displays the polymer 
pressures. The temperature of the upper and lower faces of the die were controlled by the heating units. Several 
tests on the PE Dowlex 2042E were carried out at different pressures from 10 to 25 MPa. Some experimental 
conditions are listed in the Table 2.  Figures 6-9 show the temperature profiles measured within the die in the 
flow direction, both near the channel and the heating plates. The temperature is maximal at the die inlet and then 
decreases to reach a constant value, which was lower than the inlet melt temperature. At the die outlet the 
temperature profiles near the channel increase with the pressure drop. This observation is probably due to the 
shear heating effect. Figures 8 and 9 show the boundary conditions on the upper and lower faces. 
 

Table 2: Tests conditions. 

Tests Screw rotation 
(rpm) 

( )T Ccinf °  ( )T Ccsup ° ( )T Cmat ° ( )P MPamelt ( )p MPa∆  ( )/Q g s

1 10 200 200 201 9.9 8.8 0.15 

2 19 200 200 201 15.6 13.9 0.29 

3 26 200 200 202-201 20 17.7 0.43 

4 37 200 200 201 25 20.3 0.53 
 

3.  MATHEMATICAL MODELING  
A steady laminar flow model of an incompressible polymer is considered. Figure 4 shows the 2-D geometrical 
model ( ) of the extrusion die in a median plane parallel to the flow direction. The polymer melt 

enters the extrusion die at  with a temperature profile 
1= ∪Ω Ω Ω0

0=x ( )zT0 . The velocity and the temperature fields are 
governed by the coupled equations of mass, momentum and energy, i.e.  

0.
rrr

=∇U   in   0Ω  (2) 

( ) ( )f U . U p Uρ η∇ = −∇ +∇ ∇
r r r r r r r

   in   0Ω  (3) 

( ) ( ) ( )TSTFTTUC ffpff ++∇∇=∇
rrrr

λρ ..   in   0Ω  (4) 

( ) ( )TST ww =∇∇
rv

λ.     in          1Ω  (5) 
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The term  is due to viscous dissipation. According to the rheological behaviour, this term can take 
various forms. In our study, it is given by: 

( )F T

( ) ( ) 2,F T Tη γ γ= & &  (6) 

The terms  and  are introduced for taking into account the heat losses through the connectors of 
the non-heated side face of the die. 

( )fS T ( )wS T

[ ], ( , , ) ( , )
zone
eq

f w amb
zone

h
S x z T T x z T

l
= − , [ ] [ ]x, ) 0,0.2 0,0.04x z ∈Ω =(  (7) 

 
where :  

( , )
eq

zoneh x z = heat transfer coefficient for each zone, obtained by the thermal resistances calculated in the 

direction. The spatial domain  is divided in 9 zones as shown in Figure 5. Oy Ω

zonel  = distance between the axis of the flow (Ox) and the end of each zones.  = ambient temperature. ambT

Figure 5: Lateral face of the extrusion die:  locations  
of heat losses zones. Figure 4 : Extrusion die / 2-D spatial doma

4Γ

Γ

The following boundary conditions are considered for the velocity field: 

- At the inlet of the channel :  0Pp = , 0
x
u
=

∂
∂  and 0w =  on 0Γ  

- At the outlet : , LPp =
2

2 0u
x

∂
=

∂
 and 0

x
w
=

∂
∂

 on 3Γ  

- At the internal surface, the usual no-slip boundary condition : 0U
rr

=  
For the temperature field, the boundary conditions are taken as follows:  

- At the channel entrance : ( )zTT 0=  on  0Γ  
The heat flux and the surface temperature of the die are fixed : 

0T
f =
∂
∂

n
λ    on  3Γ  

n∂
∂T

wλ  = 0  on 1Γ  

( )sup,infpT T x=   on 2Γ  

( )sT T z=  on  4Γ  
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Figure 6: Measured temperature at the outer die face 
. ( )sT x 200mm,0 z 19 mm= < ≤

Figure 7: Measured temperature at the outer die face 
( )sT x 200mm,21mm z 40 mm= < ≤ . 
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Figure 8: The measured temperature : Influence of 

the pressure drop. 
,m pY% Figure 9: Temperature near the heating-plate : 

 ( )sup,inf .pT x

 
4. INVERSE HEAT TRANSFER PROBLEM 
The inlet temperature profile  has to be determined from the temperature ( )zT0 p,mY~  given by  sensors 

located inside the extrusion die at 

Ns

( )pm z,x , 1,... / 2m Ns= , p 1,2= .  
The inverse problem is formulated by considering the following least square functional: 

( ) ( )( )
22 / 2

0 0
1 1

1 , ;
2

Ns

m p m p
p m

J T T x z T Y
= =

= −∑∑ %
,

)

 (16) 

where are the temperature computed from the direct problem equations, at the measurement 

locations, with the estimated inlet temperature profile 

( 0, ;m pT x z T

( )zT0 .  
The CGM was used to search for the minimum of the functional. This method has been well documented 

elsewhere [14, 15] and will not be repeated here. The method is based on the computation of the gradient of the 
functional, which is obtained by solving the sensitivity problem and the adjoint problem defined as follows. 

 
4. 1 The Sensitivity Problem  
In order to develop the sensitivity problem equations, a variation 0Tδε  of the inlet temperature profile is 

considered, and the resulting temperature is denoted ( )0, ;T T x z T T0εδ+ = + . The sensitivity is then defined  
by :  
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( )
ε

θ
ε

0

0

TTTLim −
=

+

→
  (17) 

Developing the direct problem eqns (2)-(15) for ( )0, ;T x z T  and ( )0, ;T x z T T0εδ+  and then subtracting the 
resulting expressions lead to :  

( ) ( )
. f

P f f

F S
C U

T
ρ θ λ ∆ θ θ

∂ +
∇ = +

∂

r r
   in  0Ω  (18) 

0
nw =

∂
∂θλ                        on   1Γ  (19) 

0
nf =
∂
∂θλ              on   3Γ  (20) 

               0θ =                            on  2Γ    and 4Γ  (21) 

0Tδθ =                             on   0Γ  (22) 

( ) w
w

S
T

λ θ θ∂
∇ ∇ =

∂

r r
             in   1Ω  (23) 

where U is the direct problem velocity profile in the extrusion die. 
r

4. 2 The Adjoint Problem 
The following adjoint problem equations are obtained [14]:  

( ) ( )( ) ( ) ( )
2 / 2

0 ,
1 1

. , ;
Ns

f
P f f m p m p x zm p

p m

F S
C U Ψ Ψ Ψ T x z T Y x z

T
ρ λ δ δ

= =

∂ +
∇ + ∆ + = −

∂ ∑ ∑
r r

% in 0Ω  (24) 

0=Ψ   on 0Γ , (25) 

0
nw =
∂
∂Ψλ   on 1Γ  (26) 

0Ψ =   on  2Γ  and  4Γ  (27) 

0n.UC
n fPf =+

∂
∂ ΨρΨλ rr

  on  3Γ  (28) 

( ) w
w

S
T

λ Ψ Ψ∂
∇ ∇ =

∂

r r
             in   1Ω  (29) 

together with the gradient equation :  

( )
0

0 fJ T
n Γ

Ψλ ∂
∇ =

∂

r
 (30) 

5.  RESULTS AND DISCUSSION  
The computational technique used to solve the direct problem is based on a Finite Volume Method (FVM) 
discretization of the governing mass, momentum and energy equations. The system of the governing equations is 
discretized by employing the staggered grid for Marker and Cell (MAC) method. An augmented Lagrangian 
method [11] is used to compute the solution of   the coupling velocity-pressure equations. The grids are non 
uniformly spaced in  direction. The mesh spacing is taken smaller near the channel. The grids in the principal 
direction of flow are uniformly spaced ( . This distribution was dictated by the desire to capture the 
details of the viscous dissipation, because the temperature rise occurs in the region very near the wall, the 
temperature rise remains very low in the centre of the channel die. The accuracy of the direct problem solution 
was studied in a previous paper [13]. The comparison between the numerical and the analytical solutions 
confirms that the selected grid is adequate. The same numerical method and grids are used to solve the adjoint 
and the sensitivity problem.  

z
)160200 ×
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In order to examine the feasibility and then the accuracy of the inverse analysis for estimating the unknown inlet  
distribution temperature, by using the CGM, several numerical experiments including a constant function and a  
smooth function have been studied for the non-Newtonian flow in extrusion die [12]. 
In the present work, the inlet temperature profile is reconstructed for the test conditions n°3. Two solutions have  
been computed: one with the heat losses ( ), , ,f wS x z T  equal to zero, the other one where  is  ( ), , ,f wS x z T
given by the eqn (7), [14].  
For case I ( ( ), , , 0f wS x z T = ), the computation starts from the uniform guess . In Figure 
10, comparison is made between the initial temperature profile and the reconstructed temperature profile. It can 
be observed that the temperature is very high near the walls (260°C) and low in the channel center (130°C).  The 
estimated profile is physically difficult to interpret. Figures 11 and 12 show the comparison between the 
measured and calculated temperature at polymer-walls interfaces and the evolution of the least square criterion. 
After 3 iterations the least square criterion remains constant. 

( )0
0 470nT z= = K

) KFor case II , the computation starts from the uniform guess . In 

Figure 13, comparison is made between the initial temperature profile and the reconstructed temperature profile. 
It can be observed that at the outlet of the channel, the temperature mean of the melt decreases, while the profile 
shows a maximum at the channel center. These observations result mainly of the low thermal conductivity of the 
melt and of the heat losses through the non-heated faces of the die. It is observed that when the number of 
iterations increases, the final value of the least square criterion decreases (Figure 15) and a reasonably inlet 
temperature solution is obtained after 5 iterations. Although the optimal number of iterations is difficult to be 
determined a priori, the plot of the iterative process, Figures 14 and 15, confirm the efficiency of the CGM and 
suggest that the optimal number of iterations is around 5, when the least square criterion  is close to the 
expected value: 

( )( , , , 0f wS x z T ≠ ( )0
0 473nT z= =

J
2

sJ N σ= , which leads here to 2 0.09 / 24 0.06 Cσ σ≈ ⇒ ≈ ° . This value of the standard 
deviation of the measurement noise is quite correct. This result should be compared (and to be confirmed) to that 
of the other experiments. The inlet temperature profile estimated at the iteration numbers 5 and 20 remains 
unchanged. 
 
6. CONCLUSIONS  
An inverse algorithm was developed to construct the inlet temperature profile of the melted polymer from the 
temperature data measured in the solid wall of the extrusion die. The reconstructed profile without heat losses is 
not realistic and a reasonable profile was obtained when we take into account the heat losses. This result needs to 
be verified for other pressure drops. 
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NOMENCLATURE 

p∆ : pressure drop,  LPPp −= 0∆  

pC  : heat capacity   
η : dynamic viscosity         
F : source term of energy       

0T : inlet temperature of the fluid       
np  : direction of descent at iteration n  

J : functional to be minimised  

Y~ : measured temperatures 

cl  length of the die connector 

chL  : length of the heating-plate 
 
Subscripts 
m , p : sensor locations 

 : inlet pressure 0P

LP : outlet pressure         

U
r

:  velocity      
u ,  : axial and radial velocities w
T : temperature    
n : vector normal 
Ns  :  number of sensors 
 
Superscripts 
n : iteration number        
 
Greek Symbols 

.
γ  : shear rate 
Ψ : adjoint variable 
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e  : inlet die 
s : outlet die 
w  : wall 
f : fluid 

θ : sensitivity variable 
ρ : density 
δ : Dirac delta function 
Ω : spatial domain  
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